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Abstract

Deep Neural Network has achieved remarkable perfor-
mance in Image Classification. In Image Classification,
learning with noisy labels is an essential task due to its
ubiquity and large damage to Deep Neural Network. Based
on memorization effects of deep neural networks, “ Co-
teaching [3]” cross-trains two nets using the small-loss
trick and the state of-the-art approach“JoCoR [14]” im-
proves “Co-teaching [3]” by focusing on the “agreement”
of the two networks. In this work, we combine both the
benefits of “cross training” and “agreement” by introduc-
ing a tri-net framework called SCSD (Seek Common while
Shelving Differences). Extensive experimental results on
corrupted data from benchmark datasets including MNIST,
CIFAR-10, CIFAR-100 demonstrate that SCSD is superior
to many state-of-the-art approaches for learning with noisy
labels in Image Classification. To improve practicability
of SCSD, we further use accuracy gap between small loss
samples and large loss samples to do early-stopping. Ex-
periments have shown that our early-stopping method can
help us find a better stopping point during training.

1. Introduction
Image Classification is quite simple if all training data

are properly labelled. But what if there are plentiful misla-
belled training data? Consider a set {xi, yi} of image xi and
its corresponding label yi which is generated from a latent
true label ti. In common supervised problems, the given la-
bels y and true labels t are assumed to be the same, since
their differences are minus and will not affect model’s learn-
ing. In noisy label problem, the difference between given la-
bels and true labels are large and the amount of mislabelled
data is huge, so they will do damage to learning models.

Without considering the differences between given label

∗ indicates equal contributions.

and true label, most supervised algorithms rely heavily on
the quality of given labels. In real world, the high quality
of labels are obtained at the cost of money and manpower.
In some tasks with complicated labels, like biology experi-
ments which usually obtain weak outcome, getting a purely
clean labels can be seen as impossible. On the other hand,
Deep Neural Networks (DNN) are studied to be heavily rely
on the quality of labels[2]. With strong memorization abil-
ity, DNN can overfit to noisy labels, making its generaliza-
tion ability poorly.

There are two broad ways to deal with noisy labels. One
direction focus on label correction. Another focus on learn-
ing with noisy labels based on the principle for DNN to
learn image features. Our work belongs to the latter one.
Among the methods in learning with noisy labels, some
focus on estimating the latent noisy transition matrix [7]
[12]. However, the noise transition matrix is hard to es-
timate, especially with large class numbers. An alterna-
tive approach is training on selected or weighted samples,
e.g., Mentornet[4], gradient-based reweight[11] and Co-
teaching[3]. Mentornet and gradient-based reweight rely on
a small clean dataset of similar data (like pre-train on clean
Cifar-10 dataset to learn noisy Cifar-100 dataset), which
is sometimes hard to get in real world. By contrast, Co-
teaching does not need any additional clean data and is more
practicable in real world applications. It’s based on the ob-
servation of how DNN learns image features. Furthermore,
the state-of-the-art method JoCoR[14] has shown excellent
performance in learning with noisy labels by adding co-
regularization to reduce the diversity of two networks dur-
ing training. However, the joint update way is easy for error
to propagate.

Motivated by Co-teaching, we try to use ”cross update”
to prevent error propagate and at the same time leverage
the ”agreement” strategy in JoCoR. To achieve this goal,
we propose a tri-net structure named SCSD (Seek Common
while Shelving Difference), Specifically, every two nets se-
lect a relative clean set by agreement, and use it to update
the other network. In this way, we utilize the ”agreement”
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strategy in selection step to get a set of cleaner samples and
utilize ”cross update” strategy to prevent error propagate. A
co-regularization term is also added to force the three nets
to converge.

To show that SCSD significantly improves the robust-
ness of deep learning on noisy labels, we conduct exten-
sive experiments on MNIST, CIFAR-10 and CIFAR-100
datasets with different simulated noise pattern and noise
level. Empirical results demonstrate that the robustness of
deep models trained by our proposed approach is superior
to many state-of-the-art approaches. Furthermore, the abla-
tion studies clearly demonstrate the effectiveness of ”Seek
Common” and ”Shelve Difference”.

For noisy label problem, where a clean validation set is
assumed not available, it is hard to select hyperparameters,
especially the epochs to stop training. Current works mainly
compare methods with fixed epochs. However, in practice,
we want to find a best model during training. Motivated
by these, we propose an early-stopping method that can tell
users when to stop the training and find a best model.

2. Related work
In this section we first introduce the ”Memorization

Effect” for DNNs, then explain the ”Sample Selection”
thought which is based on the ”Memorization Effect”. Af-
ter that, we review works that use multiple nets for joint
training.
Memorization Effect. It is studied in [2] that when deep
learning models are trained on typical datasets with mostly
correct labels, they do not memorize the data. So in the be-
ginning of training, they learn the dominant patterns shared
among the data samples. It has been conjectured that this
behavior is due to the distributed and hierarchical repre-
sentation inherent in the design of the deep learning mod-
els and the explicit regularization techniques that are com-
monly used when training them [2].
Sample Selection. An intuitive way to deal with noisy label
is to select relative clean samples for models to update. We
can treat images with wrong labels as images hard to learn
since the correlation between labels and images are quite
small. On the other hand, clean data has higher correlation
between images and labels so DNN will learn their features
faster. Considering Memorization Effect, DNN will learn
noisy data slower resulting in lower speed for loss to de-
crease during training, so the loss for clean samples will be
smaller than noisy samples at each epoch. Thus a promis-
ing method of handling noisy labels is to train models on
small-loss instances[11][4] [8] [3] [14] [15].

Besides directly use small loss to do sample selection,
some methods tend to fit a mixture model to distinguish
noisy samples from clean samples. [1] fit a two-component
Beta Mixture Model (BMM) to the max-normalized loss to
model the distribution of clean and noisy samples. How-

ever, BMM tends to produce undesirable flat distributions
and fails when the label noise is asymmetric. [6] improves
it by fitting a two-component Gaussian Mixture Model
(GMM) to losses using the Expectation-Maximization al-
gorithm. However, the EM algorithm requires several iter-
ations to converge, which need much longer time than di-
rectly using small loss selection. And this procedure can
not obtain an accurate noise ratio compared with manually
estimating noise ratio using a small portion of noisy train-
ing data, which is claimed to used in Co-teaching, JoCoR,
and our proposed method.
Joint training. A number of studies have proposed meth-
ods involving joint training of more than one model. For
example, [8] suggested simultaneously training two sepa-
rate but identical networks with random initialization, and
only updating the network parameters when the predictions
of the two networks differed. This idea was developed into
co-teaching[3], whereby the two networks identified label-
noise-free samples in their mini-batches and shared the up-
date information with the other network. Co-teaching was
further improved in [15], where the authors suggested to fo-
cus the training on data samples with lower loss values in
order to reduce the risk of training on data with incorrect la-
bels. Along the same lines, [14] propose to train two classi-
fiers simultaneously with one joint loss, which is composed
of regular supervised part and Co-Regularized part.

Figure 1. Comparision of SCSD and related works.

3. The Proposed Approach
In this section, we first introduce the motivation

for SCSD (Section 3.1), then dive into the details of
SCSD (Section 3.2), in which we describe three main
ideas in SCSD: Joint selection, Cross Update and Co-
Regularization. After that, we compare SCSD with other
existed works (Section3.3). In section 3.4, we propose
a new way to do early stopping to further improve our
method’s practicability.

3.1. Motivation

As mentioned in related work, current methods mainly
use two networks to do sample selection. Co-teaching[3]
uses a ”cross updates” methods to reduce error propagation.
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Figure 2. Framework of our proposed SCSD

JoCoR[14] improves co-teaching by introducing ”agree-
ment” of networks. In two networks’ setting, it is hard to
maintain both the benefits of cross updates and agreement.
However, we can utilize both by adding a new network, that
is a tri-net setting. In which, every two nets seek agreement
samples to update another net, a joint co-regularization term
for three nets are added to enforce converge. In this way, ev-
ery net is fed with different samples, which prevents error
flow to directly goes into next iteration. Also, the agreement
of different nets is used to make each selection more clean
and co-regularization term enforces networks to be agreed
on those highly agreed samples (which are assumed to be
clean).

3.2. SCSD

Before explaining our methods, we define annotations
that will be used later. For multi-class classification with
M classes, we suppose the dataset with N samples is
given as D = {xi, yi}Ni=1 , where xi is the i -th instance
with its observed label as yi ∈ {1, . . . ,M}. We formu-
late the proposed SCSD approach with three deep neural
networks denoted by f (x,Θ1), f (x,Θ2), and f (x,Θ3) ,
while p1 =

[
p11, p

2
1, . . . , p

M
1

]
, p2 =

[
p12, p

2
2, . . . , p

M
2

]
and

p3 =
[
p13, p

2
3, . . . , p

M
3

]
denote their prediction probabilities

of instance xi, respectively. In other words, p1, p2 and p3

are the outputs of the ”softmax” layer in Θ1 , Θ2 and Θ3

Next, we will describe SCSD in details. The whole struc-
ture can be seen in Figure 2

3.2.1 Joint selection

We adopt small-loss selection as mentioned in the related
work. For details, we update R(t), which controls how
many small-loss data should be selected in each training

epoch. At the beginning of training, we keep more small-
loss data (with a large R(t) ) in each mini-batch since deep
networks would fit clean data first. With the increase of
epochs, we reduceR(t) gradually until reaching 1−τ, keep-
ing fewer examples in each mini-batch.

Besides small loss, the agreement of models can also
help us find cleaner samples. Following JoCoR, we select
clean samples using a joint loss that considers both classifi-
cation loss and contrastive loss. For example, the joint loss
for network 1 and network 2 is defined as:

l1,2(xi) = (1− λ) ∗ l1,2sup(xi, yi) + λ ∗ l1,2con(xi) (1)

where classification loss is the sum of two network’s Cross
Entropy loss:

`1,2sup (xi, yi) = `Cl (xi, yi) + `C2 (xi, yi)

= −
N∑
i=1

M∑
m=1

yi log (pm1 (xi))

−
N∑
i=1

M∑
m=1

yi log (pm2 (xi))

(2)

The contrastive loss is used to evaluate the match of differ-
ent networks’ predictions p1, p2. To simplify implemen-
tation, we could use the symmetric Kullback-Leibler(KL)
Divergence to surrogate this term.

`con = DKL (p1‖p2) +DKL (p2‖p1)

=

N∑
i=1

M∑
m=1

pm1 (xi) log
pm1 (xi)

pm2 (xi)

+

N∑
i=1

M∑
m=1

pm2 (xi) log
pm2 (xi)

pm1 (xi)

(3)
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The joint loss of network 1 and network 2 is then used to
select a subset of small-joint-loss samples:

D̃1,2
n = arg minD′

n:|D′
n|≥R(t)|Dn|`

1,2 (D′n) (4)

Similarly, we can get another two small-joint-loss sam-
ple sets by computing the joint loss for the other two pairs.

D̃2,3
n = arg minD′

n:|D′
n|≥R(t)|Dn|`

2,3 (D′n) (5)

D̃1,3
n = arg minD′

n:|D′
n|≥R(t)|Dn|`

1,3 (D′n) (6)

where `2,3(xi) and `1,3(xi) are defined similarly as `1,2(xi)
.

3.2.2 Cross Update

Motivated by co-teaching, we use cross update of networks
to prevent error propagate. Each network is updated using
the data selected by the joint loss of the other two networks.

θ1 = θ1 − η∇`
(
θ1, D̃

2,3
)

(7)

θ2 = θ2 − η∇`
(
θ2, D̃

1,3
)

(8)

θ3 = θ3 − η∇`
(
θ3, D̃

1,2
)

(9)

3.2.3 Co-Regularization

After using joint selection to select relative clean samples
and using these samples to cross update networks, we now
introduce our loss function, which contains both a normal
classification loss and a regularization term. For example,
the loss for network 1 is defined as:

`(θ1, D̃
2,3) = (1−λ)∗lsup(θ1, D̃

2,3)+λ∗lcon(D̃2,3) (10)

The classification loss is the sum of selected data’s cross
entropy loss.

lsup(θ1, D̃
2,3) = −

∑
D̃2,3

M∑
m=1

yi log (pm1 (xi)) (11)

The regularization term is added to enforce three networks
reaching agreement on the selected samples. And is imple-
mented as the sum of three symmetirc KL Divergence.

lcon(D̃2,3) =
∑

k,l=1,2,3

DKL(pk||pl)

=
∑

k,l=1,2,3

∑
D̃2,3

M∑
m=1

pm1 (xi) log
pm1 (xi)

pm2 (xi)

(12)

Similarly, loss for network 2 and network 3 are given
below:

`(θ2, D̃
1,3) = (1−λ)∗lsup(θ2, D̃

1,3)+λ∗lcon(D̃1,3) (13)

`(θ3, D̃
1,2) = (1−λ)∗lsup(θ3, D̃

1,2)+λ∗lcon(D̃1,2) (14)

Co-teaching JoCoR SCSD
joint selection 7 3 3
cross update 3 7 3
co-regularization 7 3 3

Table 1. Comparison of state-of-the-art and related techniques
with our SCSD approach.

3.2.4 Relation to other approaches

We compare SCSD with other related approaches in Table
1 and Figure 1. The table mainly compare the differences
of methods and the figure mainly compare the differences
of structures. Specifically, Co-teaching updates parameters
of networks by the ”cross update” strategy to reduce the
accumulated error flow. JoCoR use two networks’ agree-
ment to joint select samples and add co-regularization to
joint training the two networks. Our SCSD combines all of
these three techniques with the compromise of adding a net.
Every two networks joint select clean samples and use it to
cross update the other network. A co-regularization term is
also added to enforce converge of the three.

3.2.5 Early stopping

Motivation. Current works in learning with noisy labels
mainly focus on model’s robust training and focus on com-
paring methods with fixed epochs. However, in practice,
we want to find a best model during training. And in a real
world problem, the epoch to be trained is a hyperparameter,
which is hard to determined without clean validation set.
Motivated by these, we propose an early-stopping method
that can tell users when to stop the training and find a best
model.
Method. Based on ”Memorization Effect” and ”Small Loss
Tricks”, we can divide all samples into two sets: a small
loss set and a large loss set. The small loss set is assumed
to contain mostly clean samples and the large loss set is as-
sumed to contain mostly noisy samples. At the beginning
of training, models prefer to learn clean samples and have
not overfit to noise. So the accuracy of clean samples will
increase, while the accuracy of noisy samples will remain
low, or slightly increase. The accuracy gap between clean
samples and noisy samples will increase. When network
begins to overfit noise, the accuracy for noisy samples will
increase. And the clean samples’ accuracy will remains al-
most unchanged (since models have learn them well). So,
the accuracy gap will decrease.

If we plot the accuracy gap during training with noisy
labels, it will first increase then decrease. After the highest
point, the benefit for clean samples will be suppressed by
the damage of noisy labels. So, the highest point is where
we want to stop our network from continue training.
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Figure 3. Results on MNIST dataset.T op: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 2. Average test accuracy (%) on MNIST over the last 10 epochs.

Standard Co-teaching JoCoR Ours
Symmetric 0.2 77.24 94.86 95.04 95.83
Symmetric 0.5 49.98 89.20 90.01 91.95
Symmetric 0.8 22.40 78.89 79.23 82.69
Pairflip 0.45 53.43 84.68 85.79 86.88

4. Experiments for Robust Training
In this section, we first check the robustness of SCSD

by comparing it with some state-of-the-art approaches, then
analyze the impact of seeking common and shelving differ-
ences by ablation study.

4.1. Experiment setup

Datasets. We verify the effectiveness of our approach on
three benchmark datasets: MNIST, CIFAR-10 and CIFAR-
100. The information of these datasets are summarized in
5 These datasets are popularly used for the evaluation of
learning with noisy labels in previous literature[5][10].

Since all datasets are clean, following [9][10] we need
to corrupt these datasets manually by the label transition
matrix Q, where Qij = Pr(ŷ = j|y = i) given that noisy
ŷ is flipped from clean y. Assume that the matrix Q has
two representative structures: (1) Symmetry flipping; (2)
Pair flipping: a simulation of fine-grained classification
with noisy labels, where labellers may make mistakes only
within very similar classes. Figure 6 shows an example of
noise transition matrix

Baselines. We compare SCSD with the following state-of-
art algorithms, and implement all methods with default pa-
rameters by PyTorch, and conduct all the experiments on a
GeForce RTX 2080 Ti GPU.

(i) Co-teaching [3], which trains two networks simultane-

ously and cross-updates parameters of peer networks.
(ii) JoCoR [14], which trains two deep neural net-

works and consists of agreement-update step and Co-
Regularization.

(iii) As a simple baseline, we compare SCSD with the
standard deep network that directly trains on noisy
datasets (abbreviated as Standard).

Network Structure. For MNIST, we use a 2-layer MLP.
For CIFAR-10, we use a network architecture with 2
convolutional layers and 3 fully connected layers. For
CIFAR-100, the 7-layer network architecture in our paper
follows [13]. The network structures are summarized in 6

Optimizer. Adam optimizer (momentum=0.9) is with an
initial learning rate of 0.001, and the batch size is set to
128 and we run 200 epochs. The learning rate is linearly
decayed to zero from 80 to 200 epochs. As deep networks
are highly nonconvex, even with the same network and
optimization method, different initializations can lead to
different local optimal. Thus, following [8], we also take
two networks with the same architecture but different
initializations as two classifiers.

Initialization. Assume that the noise rate τ is known. To
conduct a fair comparison in benchmark datasets, we set the
ratio of small-loss samples λ(e) as identical as Co-teaching:
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Figure 4. Results on CIFAR-10 dataset.T op: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 3. Average test accuracy (%) on CIFAR-10 over the last 10 epochs.

Standard Co-teaching JoCoR Ours
Symmetric 0.2 67.91 54.18 78.05 80.79
Symmetric 0.5 41.30 48.83 71.78 74.49
Symmetric 0.8 15.83 21.13 28.80 36.02
Pairflip 0.45 46.46 38.26 63.16 68.21

λ(e) = 1−min{ e
Ek

τ, τ}, (15)

where Ek = 10. If τ is not known in advanced, τ can
be inferred manually using a small portion of noisy train-
ing dataset[7][16]. Note that λ(e) only depends on the
memorization effect of deep networks but not any specific
datasets.

As for λ in our loss function [Eq.10], we keep it as 0.1
for all experiments settings for fairness, since our setting
doesn’t requires an additional clean validation set to tune
all parameters.

Measurement. To measure the performance, we use the
test accuracy, i.e., test accuracy = (# of correct predictions)
/ (# of test). Intuitively, higher test accuracy means that the
algorithm is more robust to the label noise. Besides, we
also use the label precision in each mini-batch, i.e., label
precision = (# of clean labels) / (# of all selected labels).
Specifically, we sampleR(t) of small-loss instances in each
mini-batch and then calculate the ratio of clean labels in
the small-loss instances. Intuitively, higher label precision
means less noisy instances in the mini-batch after sample
selection, so the algorithm with higher label precision is
also more robust to the label noise.

4.2. Comparision with the State-of-the-Arts

Results on MNIST. At the top of Figure 3, it shows test
accuracy vs. epochs on MNIST. In all four plots, we can

see the memorization effect of networks, i.e., test accu-
racy of Standard first reaches a very high level and then
gradually decreases. Thus, a good robust training method
should stop or alleviate the decreasing process. On this
point, SCSD consistently achieves higher accuracy than all
the other baselines in all four cases.

We can compare the test accuracy of different algorithms
in detail in Table 2. All new approaches work better than
Standard obviously, which demonstrates their robustness.
Among them, SCSD works significantly better than other
methods, especially in high noise settings.

To explain such excellent performance, we plot label pre-
cision vs. epochs at the bottom of Figure 3. Only Co-
teaching, JoCoR, and SCSD are considered here, as they
include sample selection during training. Note that SCSD
reaches high label precision in all four cases and gives far
more label precision than other methods in symmetric-0.8
and pairflip 0.45.
Results on CIFAR-10. Table 3 shows test accuracy on
CIFAR-10. As we can see, SCSD performs the best in
all four cases again. Note that in symmetric 0.2 and pair-
flip 0.45 co-teaching performs lower than standard method,
which demonstrate the limits of the method. By contrast,
JoCoR and SCSD are more general. In Symmetric 0.8 and
Pairflip 0.45, our method improves JoCoR by 3% – 4%,
which demonstrate SCSD is much more robust in extremely
noise settings.

Figure 4 shows test accuracy and label precision vs.
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Figure 5. Results on CIFAR-100 dataset.T op: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 4. Average test accuracy (%) on CIFAR-100 over the last 10 epochs.

Standard Co-teaching JoCoR Ours
Symmetric 0.2 32.48 43.4 43.88 47.29
Symmetric 0.5 15.39 33.52 33.87 38.97
Symmetric 0.8 4.0 14.29 15.63 15.91
Pairflip 0.45 23.14 27.07 26.41 28.25

Table 5. Summary of data sets used in the experiments.

# of train # of test # of class size
MNIST 60,000 10,000 10 28 x 28
CIFAR-10 50,000 10,000 10 32 x 32
CIFAR-100 50,000 10,000 100 32 x 32

Figure 6. Transition matrices of different noise types (using 5
classes as an example).

epochs. SCSD outperforms all the other comparing ap-
proaches on both test accuracy and label precision. On
label precision, an interesting phenomenon is that in the
Symmetry-80% case SCSD continues increasing after Jo-
CoR begins to decrease and consistently outperforms it in
all the later epochs. The result shows that SCSD has better
generalization ability than JoCoR.
Results on CIFAR-100. Then, we show our results on
CIFAR-100. The test accuracy is shown in Table 4. Test

accuracy and label precision vs. epochs are shown in Fig-
ure 5. Note that there are only 10 classes in MNIST and
CIFAR-10 datasets, but 100 classes in CIFAR-100 dataset.
Thus, overall the accuracy is much lower than previous ones
in Tables 2 and 3. But SCSD still achieves high test accu-
racy on this dataset. In the easiest Symmetry 0.2 and Sym-
metry 0.5 cases, SCSD works significantly better than Co-
teaching, JoCoR. In the hardest Symmetry-80% case, SCSD
and JoCoR tie together but SCSD still gets higher testing ac-
curacy. When it turns to pairflip 0.45 case, SCSD performs
much better than other methods.

4.3. Ablation Study

To conduct ablation study for analyzing the effect of
seeking common and shelving differences, we propose an-
other two algorithms, the diferences of them are summa-
rized in Table 7.
Seeking Common Only (SCO). This algorithm takes the
same idea as JoCoR except that three networks instead of
two are used. More precisely, three networks first jointly
select a small-loss subset according to equation 1, where
classification loss is now a sum of three networks’ loss.

lsup(xi, yi) = lC1(xi, yi) + lC2(xi, yi) + lC3(xi, yi) (16)

The contrastive loss is the sum of three symmetric
Kullback-Leibler(KL) Divergence.

lcon =
∑

i=1,2,3,j=1,2,3

DKL(pi||pj) (17)
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Table 6. MLP and CNN models used in our experiments on MNIST, CIFAR-10, CIFAR-100
MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100
28 X 28 Gray Image 32 x 32 RGB Image 32 x 32 RGB Image

Dense 28 x 28 ->256, ReLU

5 x 5 Conv, 6 ReLU
2 X 2 Max-pool

3 x 3 Conv, 64 BN, ReLU
3 X 3 Conv, 64 BN, ReLU
2 x 2 Max-pool

5 x 5 Conv, 16 ReLU
2 x 2 Max-pool

3 x 3 Conv, 128 BN, ReLU
3 x 3 Conv, 128 BN, ReLU
2 x 2 Max-pool

Dense 16 x 5 x 5 ->160, ReLU
Dense 120 ->84, ReLU

3 x 3 Conv, 196 BN, ReLU
3 x 3 Conv, 196 BN, ReLU
2 x 2 Max-pool

Dense 256 ->10 Dense 84 ->10 Dense 256 ->100/10

Table 7. Ablation study of Seek Common and Shelving Difference

SCO SDO SCSD
joint selection 3 3 3
cross update 7 3 3
co-regularization 3 7 3

Table 8. Ablation study of average test accuracy (%) on CIFAR-10
over the last 10 epochs.

SCO SDO SCSD
Symmetric 0.2 79.14 78.11 80.79
Symmetric 0.5 73.04 72.02 74.49
Symmetric 0.8 33.27 31.78 36.02
Pairflip 0.45 64.52 63.97 68.21

According to the joint loss, we can select a small loss
samples, and joint update on these selected samples. Note
that the key difference here is without the use of ”cross
update”.

Shelving Difference Only (SDO). This algorithm com-
bines joint selection and cross update but without adding
co-regularization term in Equation 10.

We show the test accuracy of CIFAR-10 in Table 8. As
we can see, SCSD performs much better than the others on
all noise settings. This observation indicates the combina-
tion of ”seeking common” and ”shelving difference” help
DNNs achieves better performance than any one of them.
The results on MNIST and CIFAR-100 are similar, so we
do not show here.

5. Experiments for Early stopping
Keep the same experiments setting as before, we conduct

early stopping experiments on SCSD to see whether we can
stop DNNs when it start to overfit. In Figure 7, we plot the
test accuracy and training accuracy gap on CIFAR-100. As

we can see, the trend of the two curves are similar. Accuracy
gap reaches largest almost as the same time as test accuracy
reaches largest. This proves that we can use accuracy gap to
guide when to do early stopping. In Table 9, we summarize
the test accuracy of using early stopping and without using
early stopping (last ten epochs’ average accuracy). We can
see a large improvement of using early stopping. We also
compare our ealry stopping results with the ideally best test
accuracy. Note that in Symmetric 0.2, our early stopping
result is almost the same as best accuracy. In high noise
setting, early stopping gives a relatively good reference for
users to determine when to update.
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Figure 7. Results of early stopping on CIFAR-100 dataset.

Table 9. Test accuracy on CIFAR-100 with early stopping.

Max Acc Early Stop Last Avg
Symmetric 0.2 52.67 52.20 47.34
Symmetric 0.5 45.01 42.74 38.60
Symmetric 0.8 18.76 17.15 15.90
Pairflip 0.45 30.22 28.89 28.28
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6. Conclusion
The paper proposes an effective approach called SCSD

to improve the robustness of deep neural networks with
noisy labels. The key idea of SCSD is to train three clas-
sifiers simultaneously and encourage them to both seek-
ing common and shelving difference. Similar to JoCoR,
we select small-loss instances to update networks in each
mini-batch data by the joint loss and cross trains three
networks like Co-teaching. We conduct experiments on
MNIST, CIFAR-10, CIFAR-100 to demonstrate that, SCSD
can train deep models robustly with the slightly and ex-
tremely noisy supervision. Furthermore, the ablation stud-
ies clearly demonstrate the effectiveness of ”Seek Com-
mon” and ”Shelving Difference”. An early-stopping algo-
rithm based on the accuracy gap between small loss samples
and large loss samples are then proposed to improve our
methods’ practicability, and experiments are done to show
its feasibility.
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