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Abstract

DUQ (Van Amersfoort et al., 2020) is a re-
cently proposed deterministic uncertainty estima-
tion method for deep neural networks, where an
adapted RBF network is trained with a two-sided
gradient penalty, and the feature distance between
data is used to predict uncertainty. The paper
claims to outperform deep ensemble (Lakshmi-
narayanan et al., 2016) in the task of out of dis-
tribution(OoD) detection on two dataset pairs. In
this report, we aim to provide a critical evalu-
ation of DUQ through methodological analysis
and experimental reproduction. Along with the
evaluation, we identify potential research areas to
explore next.

1. Introduction
With more and more machine learning algorithms partici-
pating in the human decision-making process, it is vital to
estimate the reliability of model predictions, especially in
high-risk areas. Uncertainty estimation has seen increased
attention in recent years and plays an important role in
AI settings such as guiding exploration in Reinforcement
Learning (Osband et al., 2016), and data selection in Active
Learning(Houlsby et al., 2011).

Recent advances have been made in deep learning for predic-
tive uncertainty estimation. One such approach is based on
Bayesian Neural Networks (BNNs), where model parame-
ters are described by a distribution rather than by a determin-
istic value. One of the most popular methods is Monte Carlo
(MC) dropout (Gal & Ghahramani, 2016), which avoids the
difficulty of posterior inference approximation and adopts
dropout sampling in each layer of the network. Uncertainty
is estimated by conducting several forward passes at test
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time. Some non-Bayesian approaches have also been pro-
posed. Deep Ensembles (Lakshminarayanan et al., 2016), as
one of these methods, is reported to outperform MC dropout.
It utilizes the training of multiple networks with different
initializations and different data orders and uses the entropy
of predictions to obtain uncertainty. Though effective, its
performance comes at the cost of high computational cost.

To address the problem, Van et al. propose a non-bayesian
method called “Deterministic Uncertainty Quantification
(DUQ)” (Van Amersfoort et al., 2020), which aims to im-
prove computational efficiency by estimating uncertainty
within only one forward pass. Specifically, the paper pro-
poses an uncertainty estimation method by measuring sam-
ples’ distances with closest class centroids in feature space.
Training is conducted as minimizing distance loss. The cen-
troids updating and loss function are designed to aid stable
optimization. To encourage sensitivity while maintaining
generalization ability, a gradient penalty is used. Experi-
ments conducted on one small dataset “Two Moons” and
two out of distribution(OoD) dataset pairs: FashionMNIST
vs MNIST, CIFAR-10 vs SVHN have validated the method’s
feasibility.

The scope of this report is to provide a critical evaluation
of the “Deterministic Uncertainty Quantification (DUQ)”
method. On the one hand, we are appreciated by the idea
of the deterministic way of estimating predictive uncer-
tainty, which is quite different from the previous work. The
simplicity of the method also makes it easy to follow, re-
implementation, and make changes. Some of the ideas
explained in the paper are also enlightening, such as the
gradient penalty used to balance the sensitivity and gener-
alization ability, the distance-aware training strategy, etc.
However, the methodology itself could exist some limita-
tions which are not explained in the original paper, for ex-
ample, the gradient penalty may fail with the residual block
design, which is quite common in neural network structure.
Besides the methodological discussion, we further conduct
experiments mentioned in the paper, to check the feasibility
of the methods in the empirical view. Lastly, we propose
a potential improvement direction of separating two kinds
of uncertainties. Our tiny experiments show the potential
utility of this proposal.
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2. DUQ Method
The design of the DUQ method can be mainly divided into
two parts. The first part tries to stabilize the training of RBF
networks by using a binary cross entropy loss and updating
centroids with momentum. The second part encourages
model sensitivity while enforcing output smoothness by in-
corporating a two-sided gradient penalty. Following, we
first introduce the proposed methods with Section 2.1 fo-
cusing on tricks for RBF network stabilization and Section
2.2 describing the gradient penalty design. Then in Section
2.3, we review the method with three aspects: contribution,
strengths, and weaknesses. A depiction of the architecture
of DUQ is shown in Figure 1.

2.1. RBF network Stabilization

In DUQ, a deep network without softmax layer is used to
map original data into feature space. As in normal RBF
networks, an RBF kernel is then applied to measure feature
distance with class centroids. Formaly, we denote the ex-
tracted feature for input x ∈ Rm as fθ(x) ∈ Rd, where m
is the input dimension, d is the feature dimension and θ is
the parameter of the deep network f . Centroid for class c is
denoted as Kc. The distance between feature vector fθ(x)
and class centroid Kc is:

Kc (fθ(x), ec) = exp

[
−

1
n ‖Wcfθ(x)− ec‖22

2σ2

]
(1)

where Wc is a learnable class-wise weight matrix, of size
n (centroid size) by d (feature extractor output size). σ is a
hyper parameter called the length scale.

During training, centroids are firstly fixed, and network
paramer θ and weight vectorW = {W1, · · · ,Wc} are up-
dated using a binary cross entropy(BCE) loss, defined as

L(x,y) = −
∑
c

yc log (Kc)+(1− yc) log (1−Kc) (2)

where {x,y} is a data point in the training data set {X ,Y },
with y being one-hot encoding. Intuitively, the BCE loss
enforces each data to be closed to its given class centroid,
and far away from other class centroids.

After that, parameters are held constant, and centroids E are
updated using an exponential moving average of the feature
vectors of data points belonging to that class. Specifically,

nc,t = γ ∗ nc,t−1 + (1− γ) ∗ nc,t
mc,t = γ ∗mc,t−1 + (1− γ)

∑
i

Wcfθ (xc,t,i)

ec,t =
mc,t

nc,t

(3)

where nc,t is the number of data points assigned to class c in
minibatch t. xc,t,i is element i of a minibatch at time t, with

Figure 1. The structure of DUQ. The input image is first mapped
to the feature space and then predicted as the label corresponding
to the closest centroid. This closest distance represents the uncer-
tainty of the prediction.

class c. γ is the momentum coefficient, which is usually set
between [0.99, 0.999]. The high momentum stablizes the
optimization but makes it hard to converge, for which, an
L2 normalization term of θ is added.

In inference, the prediction ypred is made by taking the
class c with closest distance:

ypred = argmax
c
Kc (fθ(x), ec) (4)

And the corresponding predictive uncertainty U(x) is de-
fined as the distance to the closest centroid:

U(x) = max
c
Kc (fθ(x), ec) (5)

2.2. Gradient Penalty

As described above, the proposed model is trained to mini-
mize the distance between data feature and corresponding
class centroid, while maximizing others. This optimization
process forces the model to push every data representa-
tion near to centroids, making it possible to map out-of-
distribution data to in-distribution space, which is called
feature collapse in the investigated paper. To avoid feature
collapse means to make the model sensitive to input space.
In other words, a change in input space can be noticed in
feature space.

Motivated by this, the authors propose to add a two-sided
gradient penalty in the training process,

λ ·

∥∥∥∥∥∇x∑
c

Kc

∥∥∥∥∥
2

2

− 1

2

(6)

where
∑
cKc is limited to the targeted Lipschitz constant

1. The author explains the intuition behind this two-sided
gradient penalty. For one side, the gradient can not be too
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large (larger than 1) to enforce smoothness. On the other
side, the gradient is not expected to be too small (less than
1) to encourage sensitivity to input changes.

2.3. Methodology Review

2.3.1. SUMMARY AND CONTRIBUTIONS

This paper proposes a deterministic method for predictive
uncertainty estimation. Based on RBF networks, the au-
thors use BCE loss and update centroids with momentum
to stabilize the training. A two-sided gradient penalty is
incorporated to avoid feature collapse.

2.3.2. STRENGTHS

- Novel idea of adapting RBF networks to estimate predic-
tive uncertainty in a deterministic way. Previous methods
mostly use non-deterministic methods, represented by
MC dropout and Deep Ensembles, and are much more
time-consuming.

- Novel design of using gradient penalty to balance sensi-
tivity and generalization ability. These two seem to be
a tradeoff. If a model is very sensitive to input, in other
words, a slight difference in input space can be detected
in feature space. It is good for OoD detection but bad for
generalization ability. Also, the classification task itself
aims to map different inputs to a single class, which may
enforce feature collapse.

- Good design of applying momentum strategy in centroids
updating. The momentum term maintains the centroid’s
past information, stabilizing the optimization.

- Good discussion of the weakness of softmax-based meth-
ods. Normally, the discriminate models focus on decision
boundaries. If an OoD data is far away from the decision
boundaries, its uncertainty may be very low under the
evaluation of prediction entropy, since the model only
makes different decisions near the decision boundary.

- The proposed technique is simple and seems easy to im-
plement and apply.

2.3.3. WEAKNESSES

- The authors do not conduct experiments to evaluate un-
certainty calibration, which is important for estimating
the validness of given uncertainty.

- The two-sided gradient penalty can be undesirable for
a residual network, since imposing ∇f(x) = 1 onto
a residual connection f(x) = x + g(x) can force g(x)
toward 0, leading to an identity mapping.

- The paper claims that two-sided gradient penalty can

(a) DUQ reproduced by us (b) DUQ shown in paper

Figure 2. Two Moons Experiment

behave better than a single-sided penalty1 by showing
empirical results without further explanation, which may
confuse readers. 2

3. Experimental Reproduction
In this section, we conduct experiments mentioned in the
investigated paper3. Specifically, we first validate the meth-
ods on the toy dataset, two-moons. Then, two pairs of
OoD datasets are explored: FashionMNIST vs MNIST, and
CIFAR-10 vs SVHN. Our experimental results verify the
reproducibility of the paper. In section 3.4, we summarize
the limitations are potential directions for future work.

3.1. Two Moons

The paper uses the scikit-learn(Pedregosa et al., 2011) im-
plementation of this dataset. We follow it to set the noise
level to 0.1 and generate 1000 points for the training set.
Other settings are kept the same with the investigated paper.
In Figure 2, we compare the visualization reported in the
paper and reproduced by us. The brighter area represents a
higher kernel value, and lower predictive uncertainty. Over-
all, both of the visualizations demonstrate high uncertainty
for areas far from the distribution and areas near the decision
boundary. However, our visualization is less satisfactory in
terms of sensitivity capabilities compared to the reported
results. See there are some OoD data with low uncertainty
on the right of the data distribution. This is probably caused
by the unstable properties of gradient penalty, and worth
further investigation and improvements.

3.2. FashionMNIST vs MNIST/NotMNIST

One task of testing the quality of uncertainty estimation al-
gorithms is out-of-distribution(OoD) detection, where some

1The one-sided penalty:λ ·max
(
0,
∥∥∇x

∑
cKc

∥∥2
F
− 1
)

2Here is our intuitive explanation, which we hope will help to
understand: The one-sided penalty has a broader limit between 0
and 1, which may not encourage sensitivity..

3We build the reproduction experiments on the officially
released code, available at https://github.com/y0ast/
deterministic-uncertainty-quantification.

https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/y0ast/deterministic-uncertainty-quantification
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reproduction reported
Acc 0.926 0.924 ± 0.2
AUROC MNIST 0.940 0.955 ± .007
AUROC NotMNIST 0.950 0.946 ± .018

Table 1. Comparision of our reproduction results and the reported
results in FashionMNIST vs MNIST/NotMNIST.

OoD data are used at test time to assess the ability of trained
models to be able to separate them from in-distribution
data. In this section, the authors use FashionMNIST(Xiao
et al., 2017) as training set, and evaluate at two OoD dataset:
MNIST(LeCun, 1998) and NotMNIST(Bulatov, 2011). It is
stated that Fashion MNIST vs MNIST is a more challenging
task than Fashion MNIST vs NotMNIST.

For evaluation, besides the normal metrics of accuracy on
the in-distribution data 4, a specific metrics for OoD detec-
tion is used for evaluating model ability to reject OoD data,
It’s expected that model gives low uncertainty for Fashion-
MNIST test set, high uncertainty to MNIST and NotMNIST
dataset.5 Therefore, we reject a portion of test data with
relatively high uncertainty. And it is evaluated by AUROC
value, with higher being better. Ideally, the metrics equal to
1 if the model can perfectly separate OoD data from original
in-distribution test data.

For experiment settings, we set the length scale to 0.1, the
gradient penalty λ to 0.05, which are reported to have the
best performance in the original paper. Other settings are
kept the same. In Table 1, we compare our reproduction
experimental results with the reported ones6. As can be
seen, our values are within the range of the original paper,
which verifies the proposed results.

3.3. CIFAR-10 vs SVHN

In this section we conduct experiments on the CIFAR-10
dataset(Krizhevsky et al., 2009), with SVHN(Netzer et al.,
2011) as OoD dataset.

Compared to the last dataset pairs, CIFAR-10 is more dif-
ficult for out of distribution detection for several reasons.
Firstly, there is a significant amount of data noise: some of
the dog and cat examples are not distinguishable using only
32 by 32 pixels. Secondly, the training set is small com-
pared to its complexity, making it easy to overfit without
data augmentation. So the paper uses random horizontal
flips and random crops as data augmentation to prevent the
model from overfitting.

4Here, the in-distribution data means the data from FashionM-
NIST, but not be seen during training

5since the model has never seen these datasets before and they
are very different from FashionMNIST.

6We store all the product model files in our submitted code.

reproduction reported
Acc(λ = 0) 0.941 0.942 ± 0.2
AUROC(λ = 0) 0.876 0.861 ± 0.032
Acc(λ = 0.5) 0.934 0.932 ± 0.4
AUROC(λ = 0.5) 0.916 0.927 ± 0.013

Table 2. Comparision of our reproduction results and the reported
results in CIFAR-10 vs SVHN.

We follow the original experimental settings, with the length
scale being 0.1 and the gradient penalty λ being 0 and 0.5.
Results are shown in Table 2, with metrics described above.
As can be seen, our reproduction results are comparable to
the reported results.

Compared to λ = 0, the authors find a slight decrease in the
prediction accuracy at λ = 0.5 and a significant increase in
AUROC. From this, the authors infer that without a gradient
penalty, the model can slightly better adapt to the training
data, resulting in higher accuracy, but due to the lack of
sensitivity, it may project different data features to similar
locations in the feature space and reduce the model’s ability
to detect uncertainty.

3.4. Future work

Our reproduction experiments verify the reproducibility of
the paper. From the experiments, we also identify some
limitations and potential directions for future work.

- From the visualization in the Two Moons dataset, we find
the gradient penalty method can be unstable. Also, in
the methodology review, we explain its limitation on the
residual block. For these, we encourage future works on
finding more stable and effective ways to improve the
sensitivity ability of the model.

- For some difficult datasets, such as CIFAR-10, the OoD
detection can be affected by ambiguity within the in-
distribution data, which are known to have high aleatoric
uncertainty. Currently, the DUQ method can not distin-
guish in-distribution data with high aleatoric uncertainty.
For this, we do some modifications to the original DUQ
method and conduct experiments on these three datasets,
which we will explain in detail in the next section.

4. Further Exploration
4.1. Motivation

We begin with a discussion of two types of uncertainty,
namely epistemic uncertainty and aleatoric uncertainty.
Epistemic uncertainty measures how well the model is
matched to the data. Aleatoric uncertainty, on the other
hand, arises from the natural complexity of the data.
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The out-of-distribution data is supposed to have high epis-
temic uncertainty. However, the uncertainty given by
the DUQ method contains both epistemic uncertainty and
aleatoric uncertainty, making it hard to distinguish OoD data
with high epistemic uncertainty from in-distribution data
with high aleatoric uncertainty.

Motivated by this, we aim to separate data with high
aleatoric uncertainty and data with high epistemic uncer-
tainty, to further improve the model’s performance in OoD
detection.

4.2. Generalized DUQ

We name our tiny improvement version as Generalized DUQ
(G-DUQ), where we keep the training procedure and only
extend the uncertainty estimation criterion in inference time.
Intuitively, data with high aleatoric tends to sit between
centroids and OoD data is always far away from all centroids.
Imagine a specific case, where point A and point B both
have the same closest distance, while point A is between
two centroids, and point B is only close to one centroid
and far away from others. In this situation, point A is more
potential to have high aleatoric uncertainty, and point B is
more likely to have high epistemic uncertainty. However,
the original DUQ method using the closest distance can not
separate the two cases.

Therefore, we extend the original uncertainty estimation
of only utilizing its nearest centroid to utilize the nearest k
centroids (k ≤ class number). Specifically, the uncertainty
is obtained from the mean of the uncertainty of the top k
closest centroids:

U(x, k) =
1

k

∑
c∈N(k,x)

Kc (fθ(x), ec) (7)

where N(k, x) represents the class set with corresponding
centroids being k-nearest.

N(k, x) = argmax|N(k,s)|=k
∑

c∈N(k,x)

Kc (fθ(x), ec)

(8)
When k=1, the G-DUQ degenerate to original DUQ.

4.3. Experiments

For the following experiments, we first use the toy dataset
Two Moons to visualize the changes in uncertainty, fol-
lowed by testing the performance of G-DUQ on the two
OoD dataset pairs. For each real dataset, we do a series of
experiments for different k for ablation study.

4.3.1. TWO MOONS

In Figure 3. we compare the Generalized DUQ (G-DUQ)
with k = 2, to the original DUQ method. It can be seen

(a) Original DUQ (b) Generalized DUQ

Figure 3. Comparision of DUQ and G-DUQ on Two Moons.

k=1 k=2 k=3 k=4
AUROC MNIST 0.94 0.97 0.97 0.97
AUROC NotMNIST 0.95 0.97 0.98 0.98

Table 3. Comparision of DUQ and G-DUQ on FashionMNIST vs
MNIST/NotMNIST.

that the G-DUQ reduces uncertainty near the boundary,
where data in this region is known to have large aleatoric
uncertainty. This visualization evident our assumption that
G-DUQ can separate data with high epistemic uncertainty
from data with high aleatoric uncertainty.

4.3.2. FASHIONMNIST VS MNIST/NOTMNIST

We evaluate the performance of G-DUQ on the OoD dataset
pairs and set k to different values. Results are shown in
Table 3, with k = 1 being the results of the original DUQ
method.7 Here we only compare the changes in AUROC,
since accuracy will remain the same as Table 1. 8

From the results, we can see that this modification does
benefit the performance and increases AUROC for both
settings. We also notice that with the increase of k, AUROC
increases and saturates. This may due to the centroids in
high-dimensional feature space are close to each other.

4.3.3. CIFAR-10 VS SVHN

Similarly, we set k to different values and observe the change
of AUROC for separating OoD data in Table 4.

Results are somewhat different from before. We find that
with the increase of k, AUROC tends to decrease. We
assume that this phenomenon might be caused by the com-
plexity of the dataset where data from different classes are
significantly different from each other. In this case, cen-
troids might be far from each other resulting in a sparse
feature space, and increasing k does not contribute to the
performance.

7We use the reproduction value here, and there is no much
difference between reported values as discussed before.

8We only change the criterion of evaluating uncertainty, and
that will not affect the model’s prediction.
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k=1 k=2 k=3 k=4
AUROC 0.916 0.864 0.753 0.644

Table 4. Comparision of DUQ and G-DUQ on CIFAR-10 vs
SVHN.

5. Conclusion
In this report, we investigate a paper in the uncertainty esti-
mation domain. We introduce the main ideas of the method,
analysis its contribution, strengths, and weaknesses. We
also reconduct the experiments and find some limitations
empirically. For one of those limitations, we design a sim-
ple strategy to solve it. Experiments on Two Moons and
FashionMNIST vs MNIST/NotMNIST validate its improve-
ment. On CIFAR-10 vs SVHN, the experiment results are
less satisfactory, which we give a potential explanation and
leave to future work.

References
Bulatov, Y. Notmnist dataset. Google (Books/OCR), Tech.

Rep.[Online]. Available: http://yaroslavvb. blogspot.
it/2011/09/notmnist-dataset. html, 2, 2011.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M.
Bayesian active learning for classification and preference
learning. arXiv preprint arXiv:1112.5745, 2011.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. arXiv preprint arXiv:1612.01474, 2016.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B.
Deep exploration via bootstrapped dqn. arXiv preprint
arXiv:1602.04621, 2016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Un-
certainty estimation using a single deep deterministic
neural network. In International Conference on Machine
Learning, pp. 9690–9700. PMLR, 2020.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.


